Главная » Вентиляция » Способы воздухораспределения

Способы воздухораспределения

Мы уже определили, для нормального функционирования вентиляции или в более общем случае системы кондиционирования воздуха необходимо поддерживать определенный воздухообмен в помещении т.е. подавать определенное количество воздуха и одновременно удалять. Для транспортировки воздуха от места забора приточного воздуха до помещения и наоборот из помещения до места выброса используют сеть воздуховодов, такая схема вентиляции самая распространенная и называется канальной (по приточным и вытяжным каналам). Диаметры воздуховодов рассчитываются таким образом, чтобы они могли пропустить необходимый объем воздуха и при этом скорость потока в них была не выше предельно допустимой, выше которой шум потока превышает установленный уровень. Воздуховоды чаще всего делают из оцинкованной стали, при малых расходах и коротких сетях используют гибкие или полужесткие воздуховоды, реже пластиковые или воздуховоды из нержавеющей стали. В самом помещении воздух распределяется через воздухо-распределяющие устройства, тип воздухораспределяющихустройств определяется в зависимости от принятого воздухораспределения. Существует два основных метода - вентиляция вытеснением замещением и вентиляция перемешиванием.

Вентиляция перемешиванием - способ вентиляции, при котором свежий приточный воздух в помещение таким образом, что происходит его перемешивание с воздухом в помещении.

Вентиляция перемешиванием.

Воздухораспределительные устройства (решетки на стенах или потолочные диффузоры ) для вентиляции перемешиванием подбираются с высокой степенью эжекции.

Эжекция - способность подмешивать в приточную струю прилегающий внутренний воздух ( производить перемешивание)

Настенные решетки с высокой степени эжекции.

Эжекция возможна только при достаточно высокой скорости потока на выходе воздухораспределительного устройства ( более 0,2 м/с), а увеличение скорости потока при заданном расходе воздуха можно добиться при уменьшение площади отверстия выхода воздуха, поэтому при вентиляции перемешиванием воздухораспределительные устройства небольшие и соответственно недорогие, именно поэтому самый распространенный тип - вентиляция перемешиванием. Ограничения на применение эжекционных воздухораспределителей, вернее на желание весь расход выпустить из одного небольшого устройства, накладывает нормируемая скорость воздуха в рабочей зоне, которая должна быть, как мы уже говорили выше, превышать 0,2 м/с. Для обеспечения заданного расхода подбирается определенное количество воздухораспеределителей, так чтобы скорость воздуха в рабочей зоне была не выше номинальной.

Так как скорость потока падает по мере удаления от диффузора. Можно рассчитать скорость в рабочей зоне.

Важно также отметить, что при раздаче воздуха через потолочные диффузоры или решетки установленные в верхней части, необходимо поддерживать температуру приточного воздуха на градус меньше температуры помещения, иначе теплый воздух просто не опуститься в рабочую зону, а уйдет сразу в вытяжной диффузор.

Вентиляция вытеснением.

Вентиляция вытеснением основана на вытеснении загрязненного или отработанного воздуха свежим приточным.

При этом способе вентиляции чистый воздух подают в нижнюю часть помещения через специальная низкоскоростные воздухораспределители и нагреваясь подымается вверх вытесняя отработанный воздух.

Такая вентиляция часто применяется в помещениях с выделениями вредностей т.к. при этом способе среднее время жизни воздуха в помещении минимально т.е. полная замена происходит быстрее, чем при вентиляции перемешиванием, при том же расходе приточного воздуха. Имеет смысл применять сей меетод и при кондиционировании высокого помещения (повыше 3 метров).в таком случае достаточно будет поддерживать заданную температуру только в рабочей зоне (до 1,8 м), а не во всем объеме, а этот приведет к ощутимой экономии энергии. Неудобство данного метода связанны с тем, что низкоскоростные воздухораспределители ( эжекции нет) достаточно большие и дорогие, занимают место в полезном объеме, а также надо учитывать, что в реальном помещении перемещаются люди, техника, могут возникать сквозняки, а это уже приводит к перемешиванию воздуха, т.е. чистого замещения все равно не достичь.

Остается добавить, что устройства воздухораспределения могут быть приточными и вытяжными т.к. на разные задачи и конструкция своя, хотя есть и универсальные распределители (допустим решетки они все универсальные.)

Приточный Диффузор

Вытяжной диффузор

Универсальный диффузор

Решетка настенная

Решетка потолочная

Существует также схема вентиляции без применения воздуховодов - бесканальная вентиляция.

Как правило это больше относиться к вытяжным системам, так вытяжную вентиляцию больших промышленных помещений, ангаров организуют на базе крышных вентиляторов, которые устанавливаются на кровлю и вытягивают воздух непосредственно из помещения под кровлей.

Вентиляторы, как приточные так и вытяжные могут быть установлены и в стенах или оконных проемах, единственное, что такие системы явно не относятся к системам способных поддерживать климатические параметры, они призваны не дать задохнуться.

Автоматическое управление Системой Кондиционирования Воздуха.

Важнейшим элементом системы кондиционирования воздуха (вентиляции) является система автоматического регулирования, от возможностей и качества автоматики напрямую зависит качество климата в помещениях и общая надежность системы в целом. Автоматическая система управления СКВ обеспечивает поддержание заданных климатических параметров, осуществляет защиту важнейших элементов системы, обеспечивает режим экономии энергии.

Т3 - Канальный датчик температуры;

Т2 - Tермостат защиты от замерзания;

T1 - Датчик температуры обратной воды;

М2 - Привод регулирующего вентиля;

М1 - Привод воздушной заслонки;

P1, Р2 - Дифференциальное реле давления.

Структурная схемам управления центрального кондиционера.

Cхема автоматики самой простой приточной установки с водяным подогревом и структурная схема центрального кондиционера, способного поддерживать влажность и температуру в любое время года. Алгоритмы управления, конечно отличаются, но можно выделить общие элементы. Любой блок управления включает в себя: блок управления, исполнительные механизмы, датчики контроля параметров, силовой электрический блок. Блок управления задает алгоритм работы всей установки управляя исполнительными механизмами, на основании обработанных данных от датчиков и заложенной программы.

Блок управления и заложенный в нем алгоритм - сердце автоматики, поэтому от его совершенства и зависят функциональные возможности системы. Контрольные датчики и исполнительные механизмы, а так же элементы силовой электрической части подбираются уже под функции, которые должен реализовать блок управления.

Простейшие блоки управления реализуются на базе электрических сборок и, может быть, отдельных аналоговых регуляторов, более сложные системы управления основаны на применение цифровых контролеров и способны реализовать любые алгоритмы управления. В каждом конкретном случае выбирается оптимальное техническое решение на основе принципа разумной достаточности.ибо любое усложнение системы управления неизбежно ведет к удорожанию системы, а любая необоснованная экономия приведет к снижению эффективности системы или преждевременному выходу из строя каких-либо элементов системы. В качестве примера можно привести два классических случая необоснованной экономии. Первый. Допустим в самой простейшей приточной установке с водяным калорифером для подогрева воздуха в системе автоматики не реализована защита от замораживания калорифера, возможно ситуация (и ох как часто), когда теплоноситель - вода, замерзнет в калорифере и лед его разорвет, а вот когда ледяная пробка растает и вода из подающей магистрали хлынет наружу, ущерб может превысить стоимость все системы вентиляции. Второй пример. Та же простейшая установка, только с электрическим подогревом, если не предусмотреть многоуровневую защиту от перегрева электрического калорифера возможен банальный пожар, о стоимости ущерба и говорить не приходиться. Еще один момент связан с качеством управления, от которого зависят эксплуатационные расходы.

Энергосбережение - важно всегда помнить об эксплуатационных расходах.

Эксплуатационные расходы систем вентиляции и кондиционирования складываются из энергетических затрат на обработку воздуха и затрат на сервисное обслуживание или ремонт оборудования.

Первая составляющая - неизбежная, однако величина ее определяется уже на этапе проектирования или выбора системы и она может быть оптимизирована.

Вторая составляющая - выбором оборудования ( с точки зрения отказоустойчивости и ремонтопригодности), определяется качеством оборудования и его размещением ( с точки зрения доступа для обслуживания).

Основу эксплутационных расходов в основном составляют энергозатраты.

Когда определены уже все параметры климата и подобраны расходы наружного воздуха, влияние на величину энергозатрат оказывает схема построения СКВ и алгоритм управления.

Для уменьшения энергозатрат в современных системах вентиляции и кондиционирования воздуха применяют рекуперацию. Смысл рекуперации в том, что удаляемый безвозвратно воздух из помещения, обладающей температурой заданной в помещении, обменивается энергией с поступающим наружным воздухом, параметры, которого, как правило значительно отличаются от заданных. Т.е. зимой удаляемый теплый вытяжной воздух частично нагревает наружный приточный воздух, а летом более холодный вытяжной воздух частично охлаждает приточный воздух. В лучшем случае на рекуперация можно уменьшить на энергозатраты на обработку приточного воздуха на 80 %! Технически рекуперация в приточно-вытяжной вентиляции осуществляется применением перекрёстноточных, вращающихся теплоутилизаторов и систем с промежуточным теплоносителем.

Перекрестноточные или пластинчатые рекуператоры состоят из пластин (алюминиевых), представляющих систему каналов для протекания двух потоков воздуха. Стенки каналов являются общими для приточного и вытяжного воздуха и легко передают. Благодаря большой площади поверхности обмена и турбулентному течению воздуха в каналах добиваются высокой степени теплоутилизации (теплопередачи) при относительно низком гидравлическом сопротивлении. Эффективность пластинчатых рекуператоров доходит до 70%.

Утилизируется только явное тепло вытяжного воздуха т.к. приточный и вытяжной воздух некоим образом не смешиваются, а конденсат образующий при охлаждении вытяжного воздуха задерживается сепаратором и отводиться дренажной системой из сливного поддона. Для предотвращения замерзания конденсата при низких температурах ( минус 10-15), автоматика обеспечивает периодическую остановку приточного вентилятора или отвод части наружного воздуха в обводной канал в обход каналов рекуператора. Единственное ограничение в применении данного метода состоит в обязательном пересечении приточной и вытяжной ветки в одном месте.

Роторный теплоутилизатор (вращающийся теплообменник) - представляет собой ротор с каналами для горизонтального прохода воздуха. Часть ротора находится в вытяжном канале. А часть в приточном, вращаясь ротор получает тепло вытяжного воздуха и передает его приточному, причем передается как явное, так и скрытое тепло, а также влажность. Эффективность теплоутилизации максимальна и достигает 80 %. Ограничение на применение данного метода накладывает прежде всего то, что до 10 % вытяжного воздуха смешивается с приточным, а в ряде случаев это недопустимо или нежелательно. Требования к конструкции аналогичны предыдущему варианту - вытяжная и приточная машина находится в одном месте. Этот способ дороже первого и реже находит применение.

Системы рекуперации с промежуточным теплоносителем - представляют собой пару теплообменников соединенных замкнутым трубопроводом. Один теплообменник находится в вытяжном канале, а другой в приточном. По замкнутому контуру циркулирует незамерзающая гликолевая смесь, перенося тепло от одного теплообменника до другого, причем в этом случае расстояние от приточной установки до вытяжной может весьма значительным.

Эффективность теплоутилизации при таком методе не превышает 60 %. Стоимость сравнительна велика, однако в некоторых случаях это может быть единственным вариантом теплоутилизации.

В целом системы с рекуперацией стоят на 40-60 % дороже аналогичных систем без рекуперации, однако затраты на эксплуатацию при этом будут отличаться в разы! Даже при сегодняшних, явно заниженных, ценах на энергоносители время окупаемости системы рекуперации не превышает двух отопительных сезонов.

В начале отмечалось, что на энергосбережение влияет алгоритмы управления. Дело в том, что все системы кондиционирования и вентиляции рассчитываются на некоторые усредненные условия. Например, расход наружного воздуха определяли на одно количество людей, а реально в помещении может находиться менее 20 % от принятого значения, конечно в таком случае расчетный расход наружного воздуха будет явно избыточным, работа вентиляции в избыточном режиме приведет к необоснованной потере энергоресурсов. Логично в таком случае рассмотреть несколько режимов эксплуатации - Зимний и летний, переходный, дневной и ночной. Если автоматика способна установить подобные режимы - налицо экономия. Еще одни подход связан с регулированием расхода наружного воздуха в зависимости от качества газовой среды внутри помещения, т.е. система автоматики включает в себя газоанализаторы на вредные газы и подбирает значение расхода наружного воздуха таким образом, чтобы содержание вредных газов не превышало предельно-допустимых значений.

Конечно усложнение системы автоматики приводит к удорожанию системы в целом, но эти удорожание окупится, и чем мощнее система или чем дороже энергоноситель - тем быстрее